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We derive the conditions for establishment of a transverse supermode in a free-electron laser~FEL! oscil-
lator, and demonstrate the evolution of a supermode by means of a three-dimensional nonlinear code. Both the
analytical formulation and the numerical code are based on coupled-mode theory. The oscillator supermode is
a combination of transverse modes that keeps its field profile at any point along the oscillator intact after each
round trip, and therefore it is the steady-state result of the oscillation buildup process. In the FEL, as in any
laser, the oscillator supermode is identical with the amplifier supermode only if the feedback process is entirely
nondispersive. If this is not the case, the steady-state supermode field profile varies along the oscillator axis.
The simulations demonstrate that the transverse supermode evolution process is primarily a linear regime
process and can be proceeded or even completed before saturation.@S1063-651X~96!13811-3#

PACS number~s!: 41.60.Cr

I. INTRODUCTION

Free-electron lasers~FEL! can be employed as coherent
sources of electromagnetic radiation in an oscillator configu-
ration @1#. Theoretical studies of radiation buildup in FEL
oscillators have been carried out by the Nizhni-Novgorod
research group@2–4#, the University of California~Santa
Barbara! @5,6#, and the University of Maryland~UMD!
@7–10#. They investigated the nonlinear and saturation pro-
cesses, taking place in the FEL oscillator. These effects were
shown to play an important role in the longitudinal mode-
competition process, which leads to the establishment of
single-mode lasing. Previous works were carried out in the
framework of a one-dimensional~1D! model, assuming a
TEM or a single transverse mode of electromagnetic radia-
tion in the resonator.

In optical open resonators and overmoded waveguide
cavities, where multitransverse modes may be excited, a
three-dimensional~3D! model of FEL interaction is required
for adequate description of the oscillation buildup process.
Such a model should take into consideration the transverse
variations of the electron beam current and the electromag-
netic intermode scattering, which originates primarily from
the finite transverse dimensions of the gain medium~electron
beam!. The transverse distribution of the amplified radiation
field varies along the interaction region in an FEL amplifier
in steady state~guiding!. In previous publications@11,12#,
we showed that there is a combination of transverse modes,
which keeps such amplitude and phase relations, so that the
field profile of the radiation field~except amplitude and
phase! does not change along the interaction region~‘‘an
amplifier supermode’’!.

By contrast, in an oscillator configuration, which we ana-
lyze here, the excited radiation, obtained at the output of the
FEL interaction region, is fed back to the input. Conse-
quently, the transverse dependence of the circulating radia-
tion field is determined self-consistently by the amplification
and feedback processes and evolves gradually into a steady-
state distribution~‘‘an oscillator supermode’’!. A three-
dimensional study of the FEL oscillator is required to follow
this development.

The 3D analysis of the radiation field excitation used in
this paper is based on modal expansion of the total field in
terms of transverse eigenmodes of the resonator in which the
radiation propagates and a coupled-mode formulation is
used. The evolution of the radiation in the resonator and the
gain medium~electron current! is studied both in the linear
and nonlinear regimes, employing an analytical approach
and a 3D simulation code.

II. ANALYSIS OF A MULTITRANSVERSE MODE
OSCILLATOR

We first derive analytically a stability criterion for oscil-
lations, assuming that linear gain expressions can be still
employed as the oscillator arrives to steady-state operation.
This approach is similar to the one employed in general laser
theory for estimating the threshold gain required for self-
excitation and oscillation startup@13#. It also predicts the
frequencies of oscillation~longitudinal modes! in stable op-
eration. This analysis is, however, of limited use for predict-
ing the amplitude of oscillations and the power of the output
signal.

In laser oscillators, usually many transverse modes can be
excited simultaneously and may be coupled to each other.
Consequently, one should employ a multimode analysis in-
cluding feedback conditions in order to formulate the crite-
rion of oscillation.

Assuming a uniform cross-section resonator~usually a
waveguide!, the total electromagnetic field at every planez,
can be expressed as a sum of a set of transverse~orthogonal!
eigenfunctionsẼq(x,y) with related amplitudesCq(z). At
the entrance to the wiggler, the modes are assumed to have
initial amplitudesCq~0! and the total field atz50 is given by

Ẽ~x,y,z50!5(
q

Cq~0!Ẽq~x,y!. ~1!

Passing through the interaction region of the laser, the ‘‘slow
varying’’ amplitude of each mode isCq(z), and the total
electromagnetic field at the exit of the interaction region can
be written as
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Ẽ~x,y,z5Lw!5(
q

Cq~Lw!Ẽq~x,y!ejkzqLw, ~2!

where kzq is the axial propagation constant of transverse
modeq. Part of the field is coupled out through the resonator
out-coupler and the remainder is reflected and fed back to the
input of the FEL amplifier, as shown schematically in Fig. 1.

In the general case, the reflection mirrors can produce
intermode scattering and there may be cross coupling be-
tween the reflected modes. After a round trip in the resonator
the total field circulated back into the entrance of the inter-
action region is

Ẽ~x,y,z5 l c!5(
q

Cq~ l c!Ẽq~x,y!ejkzql c. ~3!

l c is the total round trip length of the cavity, andCq( l c) are
the mode amplitudes after a round trip in the resonator and
are given by

Cq~ l c!5(
q8

rqq8Cq8~Lw!, ~4!

where rqq8 are complex reflection coefficients, expressing
the intermode scattering~in terms of slow varying ampli-
tudes! of transverse modeq8, to modeq, due to the resonator
mirrors or any other passive elements in the entire feedback
loop. If the scattering matrix from the output of the oscillator
back to its inputr= is defined@in terms of the fast varying
amplitudesCq(z)e

jkzqz# by

Cq~ l c!e
jkzql c5(

q8
r qq8Cq8~Lw!ejkzq8Lw,

then comparison with Eq.~4! reveals the relation

rqq8[r qq8e
j ~kzq8Lw2kzql c!.

The expression for the total circulated field is found from
Eqs.~3! and ~4!:

Ẽ~x,y,z5 l c!5(
q F(

q8
rqq8Cq8~Lw!G Ẽq~x,y!ejkzql c.

~5!

When the oscillator arrives to its steady-state regime of
operation, the initial field atz50 must be equal to the circu-
lated field after a round-tripz5 l c , i.e.,

E~x,y,z50!5E~x,y,z5 l c!. ~6!

By substituting in Eq.~6! the expressions~1! and~5! for the
fields, and scalar multiplying both sides of the equation by
the eigenfunctionẼq(x,y), one obtains the steady-state os-
cillation condition:

Cq~0!5ejkzql c(
q8

rqq8Cq8~Lw!. ~7!

It was shown in the coupled-mode analysis of the FEL
amplifier carried out in@11,12# that the amplitude of the
transverse modes at the output of the FEL interaction region
can be written in terms of the gain matrixG= (Lw) of the FEL,

CI ~Lw!5G= ~Lw!CI ~0!. ~8!

Substituting Eq.~8! in Eq. ~7!, we derive a set of equations
for the amplitudes of the modes in steady-state operation:

Cq~0!5ejkzql c(
q8

rqq8(
q9

Gq8q9~Lw!Cq9~0!. ~9!

The last set of equations~9! can be written in a compact
matrix form:

@ejK= zl cr=G= ~Lw!2I=#CI ~0!50, ~10!

where the matrixK= z is a diagonal matrix with the wave
numberskzq on its diagonal. The condition for a nontrivial
solution forCI ~0! is vanishing of the determinant:

uejK= zl cr=G= ~Lw!2I=u50. ~11!

This is a generalized oscillation criterion for the case where a
number of transverse modes are excited in the resonator.
Note that this criterion can be generalized also for lasers with
two mirror resonators of reflectivity matricesr= 1 andr= 2, for
which Eq. ~11! can be written asejK= zl cr= 1G= 1(Lw)r= 2G= 2(Lw)
2I=u50. It is an extension to the criterion derived for single
transverse mode laser oscillators~where the gain, wave num-
ber, and reflection coefficient are scalars! @13#, which re-
quires the round-trip gain and oscillation frequency to satisfy
rqGq(Lw)e

jkzql c51. Using analytical expressions forG= (Lw),
derived in@12#, the 3D criterion for oscillation~11! is useful
for estimating more accurately the FEL oscillator threshold
conditions and oscillation frequencies.

Evidently, the expansion modes~the free-space or wave-
guide modes!, which are the eigenmodes of the ‘‘cold’’ reso-
nator without a gain medium and feedback, are in general not
the eigenmodes of the FEL oscillator. These modes are
coupled to each other by the gain medium~e beam! of the
FEL amplifier and may also be interscattered by the reflec-
tion mirror.

If a similarity transformation that diagonalizes the round-
trip matrix ejK= zl cr=G= (Lw) exists, the oscillator will reach a
stable regime of operation. In the following we show that
finding such a similarity transformation is equivalent to solv-
ing for a new set of independent modes that become the
steady-state eigenmodes~supermodes! of the oscillator.

III. THE ‘‘SUPERMODES’’ OF THE FEL OSCILLATOR

To derive the field profile of the oscillator supermodes,
we employ a linear transformation which transforms the

FIG. 1. Schematic illustration of a free-electron laser oscillator.
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coupled system of modes to an uncoupled one@14,15#. In
every cross section, each of the transverse~free-space or
waveguide! modes can be written as a linear combination of
a new set of uncoupled eigenmodes with amplitudesUI (z).
The relation between the two representations atz50 is given
through the linear transformation:

CI ~0!5T=UI ~0!. ~12!

This transformation is used together with Eq.~10! to derive
the steady-state condition for the supermodes:

UI ~0!5T= 21@ejK= zl cr=G= ~Lw!#T=UI ~0!. ~13!

The above equation~13! is satisfied when the similarity
transformationT= 21@ejK= zl cr=G= (Lw)#T= produces a diagonal
unit matrix. In that case the linear transformationT= repre-
sents the superposition of cavity modes@of amplitudes
Cq~0!# at z50 that keeps its transverse features every round
trip in the resonator. Note that this superposition may vary
along the resonator.

Unlike the amplifier case, which is characterized by an
axial translational symmetry where the supermodes main-
taining their transverse field profile and polarization along
the interaction region, the only symmetry which exists at
steady-state operation of the oscillator is a round-trip period-
icity of the circulating field, which is analogous to periodic
translational symmetry with periodicityl c . Thus, the super-
modes of the oscillator do not, in general, keep their trans-
verse profile unchanged along the resonator.

IV. THE OSCILLATOR SUPERMODES—
DEGENERATE CASE

In order to see better the relations between the oscillator
and amplifier supermodes, it helps to substituter= in Eq. ~13!
in terms of the scattering matrixr= :

UI ~0!5T= 21@r=ejK= zLwG= ~Lw!#T=UI ~0!. ~14!

In the special case whenr=5rI= is a scalar, namely the feed-
back is nondispersive and all the modes are reflected indis-
criminately~same phase and amplitude coefficient! and with-
out interscattering, Eq.~14! can then be written as

UI ~0!5rT= 21@ejK= zLwG= ~Lw!#T=UI ~0!. ~15!

The transformation matrixT= is exactly the transformation
required in order to derive the supermodes of the free-
electron laser amplifier@11,12#. It is identified to be the simi-
larity matrix that diagonalizes the coupled mode gain matrix
ejK= zLwG= (Lw) of the amplifier section of the FEL. The result-
ing diagonal matrix consists of the gain coefficients
L i(Lw)5Ui(Lw)/Ui(0) of the uncoupled normal modes of
the FEL. They are the eigenvalues of the coupled-mode gain
matrix and are found from the algebraic equation:

uejK= zLwG= ~Lw!2L~Lw!I=u50. ~16!

An example for such a special case is when the transverse
modes excited in the oscillator are degenerate in their longi-
tudinal wave numberkzq and are reflected by the resonator

mirrors indiscriminately~without interscattering! and with
equal reflection coefficientr. Equation~13! can then be writ-
ten as

UI ~0!5rejkzl c@T= 21G= ~Lw!T= #UI ~0!. ~17!

The transformation matrixT= used in Eq.~13! to find the
supermodes of the oscillator is identified to be the similarity
matrix that diagonalizes the gain matrixG= (Lw) of the ampli-
fier section of the FEL. The eigenvaluesL i(Lw) of the
coupled-mode gain matrix in that case are found from the
algebraic equation:

uG= ~Lw!2L~Lw!I=u50. ~18!

Given the eigenvaluesL i(Lw), the stability criterion for each
of the uncoupled oscillator supermodes can be written as
rL i(Lw)e

jkzl c51, similar to that derived in a single~trans-
verse! mode analysis of oscillators. Employing an explicit
expression for the gain matrixL i(Lw) which was derived
analytically in @12# for the supermode in the linear regime,
the solution of the stability criterion~18! determines the las-
ing gain threshold and the operating frequencies.

V. THREE-DIMENSIONAL SIMULATION
OF FEL OSCILLATOR

In order to demonstrate the evolution of the electromag-
netic radiation field in a multitransverse mode free-electron
laser oscillator into a supermode, we employ a three-
dimensional computer programFEM3D simulating the FEL
amplifier operation in the linear and nonlinear regimes and
an appropriate algorithm for feedback process.

The FEL amplification code is based on a modal expan-
sion of the total electromagnetic field in terms of transverse
waveguide modes@Eq. ~2!#, and solves a self-consistent sys-
tem of electron force equations and electromagnetic excita-
tion equations@16#.

A set of excitation equations describes the evolution of
amplitudeCq(z) of each transverse mode along the interac-
tion region:

d

dz
Cq~z!5

1

2Pq
e2 jkzqz

I 0
N (

i51

N
1

vzi
vi• Ẽq* ~xi ,yi !e

jvsti ~z!,

~19!

where Pq5 1
2Re**@ Ẽ'q3H̃'q* #• ẑdx dy is the power nor-

malization of the propagating mode andI 0 is the electron
beam current. (xi ,yi) are the transverse coordinates of par-
ticle i , andvi is its velocity vector. The dynamics of each of
the N particles in the simulation is described by the force
equation

d

dz
~g ivi !52

e

m

1

vzi
@E1vi3B#, ~20!

where the relativistic factorgi is found from

dg i

dz
52

e

mc2
1

vzi
vi•E. ~21!

The time it takes a particle to arrive at a positionz is
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t i~z!5t0i1E
0

z 1

vzi~z8!
dz8, ~22!

wheret0i is the time when thei th particle entered atz50.
The entrance timet0i of theN particles is determined to

be distributed uniformly over the time periodT52p/vs of
the signal, i.e.,t0i5(2p/vs)( i21)/N for i51,2, . . . ,N.
The assumption is that the problem can be described cor-
rectly by a steady-state statistical distribution of the electron
initial time t0i , that is, periodic with periodT. Namely, it is
enough to sample electrons in one optical periodT52p/vs ,
and the field solutions in any other period will be the same.
This assumption is good only for stimulated and prebunching
radiation, not spontaneous emission and amplified spontane-
ous emission problems, where the sampling time of electrons
must be a slippage timetsp5Lv/vz02Lw/vg ~vz0 is the
axial velocity of the electrons andvg is the group velocity of
the electromagnetic radiation in the cavity!. At the present
version of the simulation code, theN particles are injected
into the interaction region homogeneously, via equal time
intervals. The code can be modified to simulate radiation
buildup process in a prebunched FEL oscillator by inserting
the particles into the interaction region with a nonuniform
distribution over the time periodT. We found that reliable
results are obtained whenN.20 particles are taken in the
simulation along the longitudinal dimension.

The oscillation buildup process is followed round trip af-
ter round trip until steady state is achieved, assuming ap-
proximate knowledge of the oscillation frequency at steady
statea priori. Such an assumption is reasonable in cases
where the oscillator is expected to arrive to a single fre-
quency stable operation at steady state. In cases where the
number of longitudinal modes under the gain curve is small
~short resonator or use of frequency filtering structure!, the
model will describe the real oscillation buildup process. In
other cases, it will describe correctly only the supermode
profile that is attained at steady state.

VI. TRANSVERSE MODE EVOLUTION
IN THE FEL OSCILLATOR

We first show the calculation of the supermode in a spe-
cific example based on the analytical theory in the linear
regime. The example presented here is of the electrostatic
accelerator free-electron maser~FEM! now being developed
in Israel@17,18#. The basic parameters of the FEM are given
in Table I. The waveguide is a 1.531.5 cm2 rectangular
waveguide in which the fundamental TE01 mode and the de-
generate TE21 and TM21 modes are found to be within the
frequency range of operation. Other modes are too far from
phase matching and do not contribute to the interaction.

Figure 2 illustrates the small-signal gain curves of the
TE01, TE21, and TM21 modes, excited in the FEL amplifier
operating in the linear regime. The curves are calculated run-
ning the numerical simulation in the small-signal regime.

The results of single mode gain calculations~disabling
coupling between the modes in the gain calculations! are
given as dashed lines. Since the TE21 and TM21 modes have
the same wave number, they operate in the same frequency
range, and can strongly couple to each other. The gain curve
of their resultant supermode~in the amplifier sense! is shown

as a continuous line. This mode, found from coupled-mode
theory, was identified in this particular case as the linearly
polarized LP21 mode of the rectangular waveguide@19#,
which is purely polarized in the wiggling dimension. Inspec-
tion of the gain curve reveals that the highest gain is obtained
at a frequencyf5116 GHz, where the linearly polarized
mode LP21 exhibits maximum gain. The UMD theory@6–10#
predicts that at steady state, the oscillator will arrive to single
frequency operation, and the longitudinal mode, which will
‘‘survive’’ the mode competition process, is expected to os-
cillate near this maximum gain frequency. Hence we chose
this frequency to run the example in the present multitrans-
verse modes, single-longitudinal mode simulation.

We now report also a complete nonlinear numerical simu-
lation of the process of radiation buildup in the FEL oscilla-
tor. Starting from a low level of initial power, the radiation
obtained at the output of the FEL amplifier at each stage is
fed back to its input, as described by Eq.~7!, assuming that
there is no cross coupling between the modes due to the
mirrors of the resonator. The phase shift for the degenerate
TE21 and TM21 is assumed to be 2mp ~the phase shift of the
TE01 is determined by its wave number and the length of the
feedback loop!. Neglecting at this time multilongitudinal
mode competition, we assume operation at a single fre-
quency corresponding to the maximum linear gain of the
TE21 and the TM21 modes and uniform power reflectivity of
R5uru2590% for each of the transverse modes. Internal

TABLE I. Parameters of the tandem electrostatic accelerator
FEL.

Accelerator:
Electron beam energy Ek52 MeV
Beam current I 051 A

Wiggler:
Magnetostatic planar wiggler
Magnetic induction Bw53 K G
Period length lw54.4 cm
Number of periods Nw520

Waveguide:
Rectangular waveguide 1.531.5 cm2

FIG. 2. Small-signal gain curves of the FEL amplifier.
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waveguide losses are neglected.
At the first round trip, the fundamental TE01mode and the

degenerate TE21 and TM21 modes were assigned equal initial
power and phase. The initial power was determined to be
sufficiently small to avoid nonlinear effects on the first tra-
versals. Graphs of the power carried by each of the indi-
vidual modes relative to the total power circulating in the
oscillator,

Pmode

Ptotal
5

uCq~Lw!u2Pq
Sq8uCq8~Lw!u2Pq8

,

is shown in Fig. 3. The phase relation between the degener-
ate TE21 and TM21modes is also drawn. The evolution of the
single-pass gain of the individual modes

Gq5
uCq~Lw!u2

uCq~0!u2

and the total gain

Gtotal5
P~Lw!

P~0!
5

SquCq~Lw!u2Pq
SquCq~0!u2Pq

as a function of round-trip number is shown in Fig. 4.
During several round trips, the radiation power is still

small and the FEL is operating in the linear regime. The gain
of the coupled TE21 and TM21 modes is self-adjusted until
the power is shared in a combination that corresponds to the
LP21 supermode.~Note that in this process the gain of the
TE21 is initially less than 1 and then excessively high, until it
coincided with the gain of the TM21 and the supermode.! The
nonsynchronous fundamental TE01 mode does not contribute
much to the interaction, but it experiences a substantially
high gain during the oscillation buildup period. As the circu-
lated power grows, the oscillator enters the nonlinear regime,
and the gain decreases. In this regime, the amplitude growth
of the modes restrains until saturation is reached. Saturation
is characterized by a constant FEL gain, equal to the trans-
mission losses of the cavity~in the present simulation the
gain G51/R51.1!. Observe that the phase difference
changes until the TE21 and TM21 modes lock in antiphase.
This demonstrates the transverse mode evolution towards

FIG. 4. Gain evolution of transverse waveguide modes starting
from equal power and the same phase in a FEL oscillator.

FIG. 5. Relative circulating power and phase evolution of trans-
verse waveguide modes starting from power and phase relations
that exhibit the FEL oscillator supermode.

FIG. 6. Gain evolution of transverse modes starting from power
and phase relations that exhibit the FEL oscillator supermode.

FIG. 3. Relative circulating power and phase evolution of trans-
verse waveguide modes starting from equal power and the same
phase in a FEL oscillator.
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generation of the LP21 supermode, which is an antiphase
combination of the TE21 and TM21modes. This supermode is
the steady-state eigenmode of the FEL oscillator.

It is important to note that the process of the supermode
buildup starts well before the onset of saturation. Contrary to
the longitudinal mode competition process, which is an en-
tirely nonlinear~saturation regime! effect @2–10#, the trans-
verse mode interaction process takes place also in the linear
regime.

One can also start the power circulation initially with the
combination that produces the supermode right from the be-
ginning. The linearly polarized LPmn supermode is obtained
in a rectangulara3b waveguide, when the degenerate TEmn
and TMmn modes are excited simultaneously with a power
relation PTM/PTE5(k2/k z

2)(k x
2/k y

3), where kx5mp/a and
ky5np/b, and with a phase difference of 180°@19#. In that
case the degenerate TE21 and TM21 modes will keep their
relative power and phase relations starting from the first

round-trip traversals of oscillation buildup, as demonstrated
in Fig. 5, and will enter together into the saturation regime.
Since the power ratio between the degenerate modes is con-
served during the radiation buildup, the individual TE21 and
TM21 modes have equal gain also in the linear regime~see
Fig. 6!. The gain of the supermode is equal to the total gain
of the FEL.

The simulation confirms numerically the prediction of the
analytical model, namely, that when the feedback is nondis-
persive, theoscillator supermodeat steady state is identical
to the amplifier supermode, and produces the same super-
mode solution~the LP21 mode! that was predicted with the
analytical model.

In Fig. 7 the output efficiency of individual modes and the
total gain are shown as a function of the number of round
trips for the case where the supermode is set initially. The
gain variation during the first few round trips can be associ-
ated with the interference of the TE01 mode, which has ini-
tially the same power as the TE21 mode. When the TE01
mode diminishes, the total gain returns to the small-signal
gain of the supermode~Fig. 6! and then falls down in the
nonlinear regime to the same saturation valueG51/R51.1.

VII. SUMMARY AND CONCLUSIONS

Transverse mode evolution in a FEL oscillator is dis-
cussed. A generalized multimode oscillation condition is de-
rived, and the eigenmodes of the oscillator in steady state are
found. These modes are identified to be the transverse ‘‘su-
permodes’’ of the FEL amplifier if the feedback system is
nondispersive and does not produce intermode scattering.

The evolution of the modes and the formation of a ‘‘su-
permode’’ is examined using a nonlinear multitransverse
modes code. The formation of the ‘‘supermode’’ may take
place in the linear or in the nonlinear regime, depending on
the internal losses and the outcoupling transmission.
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